Welcome! Our Galactic Ecosystem: Opportunities and Diagnostics in the Infrared and Beyond

Margaret Meixner
Director SOFIA Science Mission Operations
February 28, 2022

SOFIA is the only far-IR observatory for the next decade.

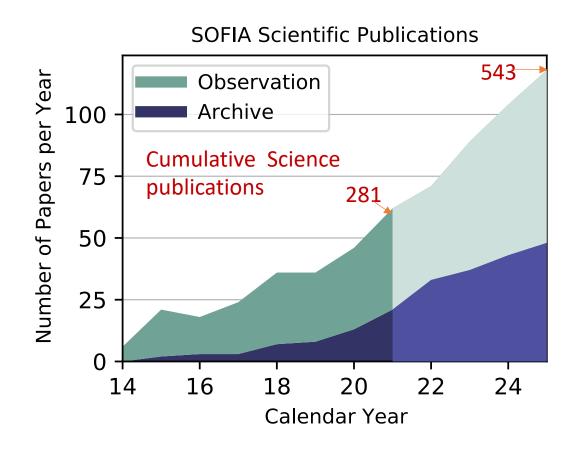
- Your SOFIA science is exciting and compelling.
- SOFIA advances Astro2020 science by directly addressing one half of the decadal science priorities in all three science themes
 - Cosmic EcoSystems,
 - Worlds and Suns in Context,
 - New Messengers and New Physics.

https://www.sofia.usra.edu/sites/default/files/2022-01/SOFIA Traceability Matrix.pdf

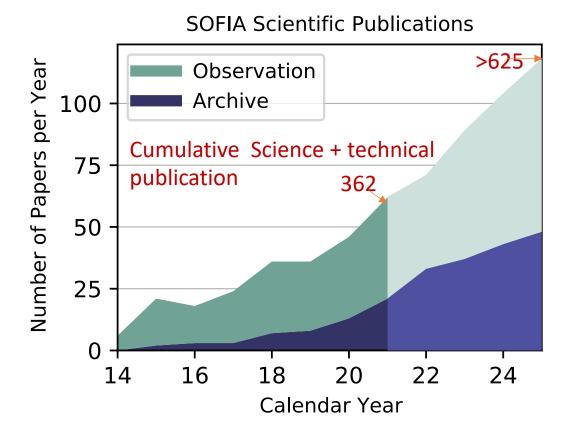
SOFIA SCIENCE TRACEABILITY MATRIX

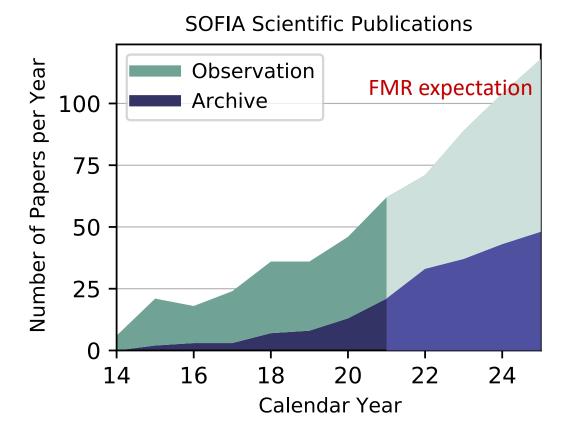
Decadal Science Questions †	Key Measurements	SOFIA Instruments	SOFIA Observations
HOW DID WE GET HERE? COSMIC ECOSYSTEMS			
F-Q1: How do star-forming structures arise from, and interact with, the diffuse interstellar medium?	[CII] 158µm, [OI] 63 & 145µm, light hydrides, kinematics & Far-IR polarimetry	GREAT, FIFI-LS, HAWC+, *THzMap	FEEDBACK, HyGal, LMC+, GalMag, C+SQUAD
F-Q2: What regulates the structure and motions within molecular clouds?	[CII] 158µm, light hydrides, Far-IR polarimetry at 0.1 pc	HAWC+, GREAT, *THz- Map	SIMPLIFI, GalCen, HyGal
F-Q3: How does gas flow from parsec scales down to protostars and their disks?	Far-IR polarimetry at 0.1 pc, Mid/Far-IR variability & high-res spectroscopy	HAWC+, EXES, GREAT, FORCAST, FIFI-LS, *DirectDet	FIELDMAPS, SIM- PLIFI, HyGal
D-Q2: How do gas, metals, and dust flow into, through, and out of galaxies?	[CII] 158μm, light hydrides, [O III] 88μm, Far-IR polarimetry <200 pc	GREAT, FIFI-LS, HAWC+, *THzMap, *DirectDet	HyGal, GalMag, LMC+
D-Q4: How do the histories of galaxies and their dark matter halos shape their observable properties?	[C II] & [O III] in galaxies (< 200pc), [13C II]	GREAT, FIFI-LS, *THzMap	M51, LMC+, Galaxies

https://www.sofia.usra.edu/sites/default/files/2022-01/SOFIA_Traceability_Matrix.pdf



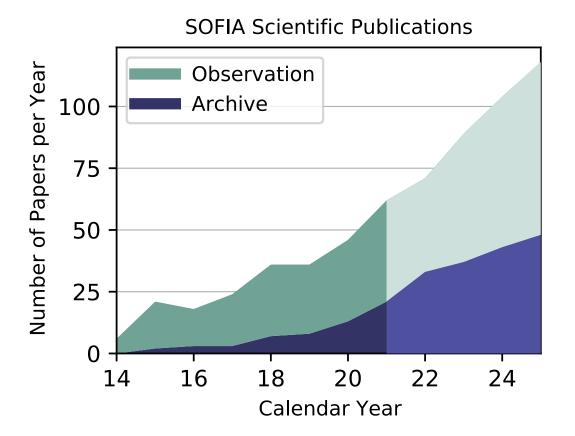
 SOFIA is currently at an inflection point of its growth in science publications, similar in gradient to the early years for space missions.



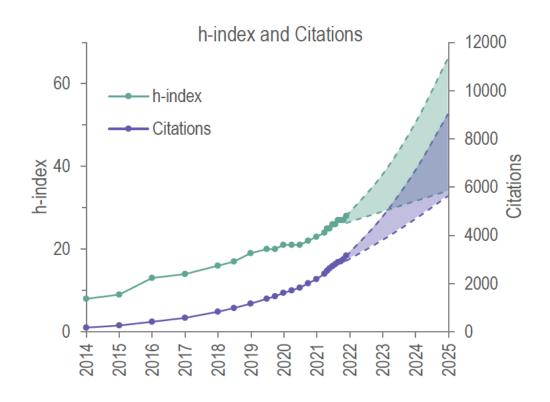


- SOFIA is currently at an inflection point of its growth in science publications, similar in gradient to the early years for space missions.
- Technical publications (81) are almost one third the science publications (281), which demonstrates the value of SOFIA to the astronomical community in far-IR technology and instrument development.

- SOFIA is currently at an inflection point of its growth in science publications, similar in gradient to the early years for space missions.
- Technical publications (81) are almost one third the science publications (281), which demonstrates the value of SOFIA to the astronomical community in far-IR technology and instrument development.
- Conservative projections indicate that SOFIA will reach over 100 publications per year by 2024 in line with expectations from its flagship mission review.

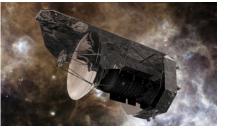


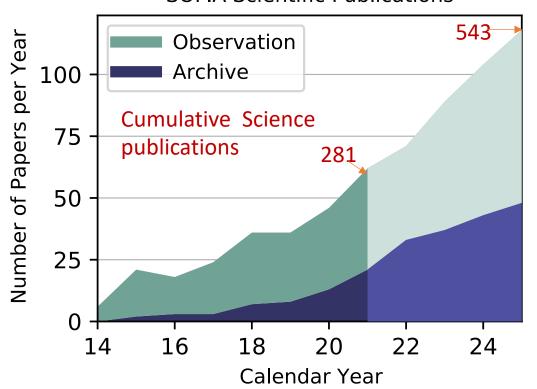
- SOFIA is currently at an inflection point of its growth in science publications, similar in gradient to the early years for space missions.
- Technical publications (81) are almost one third the science publications (281), which demonstrates the value of SOFIA to the astronomical community in far-IR technology and instrument development.
- Conservative projections indicate that SOFIA will reach over 100 publications per year by 2024 in line with expectations from its flagship mission review.
- Your SOFIA publications are vital to the SOFIA's success.
- Every paper counts!



SOFIA Citations and H-index

- SOFIAs impact is growing.
- Projections of impact will lie in the shaded region.
- The upper line reflects an extrapolation from the last two years of stats.




SOFIA vs. space missions

SOFIA Scientific Publications

- SOFIA's science publications (281) are significantly higher than the science return from far-IR balloon programs (8).
- SOFIA has been compared to Hubble, a mature robotic space mission (~30 years) with a substantial archive.
- A better comparison is with Herschel, a recent far-IR mission that provided 22,000 observing hours and produced 900 publications. SOFIA has observed for 4000 hours and produced 281 science publications.
- SOFIA has already passed Herschel in paper-writing efficiency, and over its operational lifetime, SOFIA will provide a similar number of observing hours and publications.

Our Galactic Ecosystem: Opportunities and Diagnostics in the Infrared and Beyond

Let's maximize SOFIA's Science Return!

